Class 13

Infixation

11/19/21

1 Introduction

- Infixes are morphemes that (at least some of the time) attach inside of morphological constituents, rather than to the edge of a morphological constituent.
 - See Blevins (2014) for a recent overview, focusing on derivational infixes but applicable generally.
- Most of the time, people analyze infixation as being driven by phonological conditions on the position of the morpheme (see especially Yu 2007).
- Just like with allomorphy, mobile affixation, and PCAO, there is a debate in the literature about how these phonological conditions should be implemented:
 - o Via Subcategorization (Yu 2007, Paster 2009, Kalin 2020)
 - o By $P \gg M$ (McCarthy & Prince 1993a, Wolf 2008, a.o.; cf. Zukoff to appear)
- The arguments for and against are similar to those in the other domains:
 - Many infixal distributions seem to be governed by optimizing phonotactics, so $P \gg M$.
 - Some infixal distributions seem to be non-/anti-optimizing, so Subcategorization.
- Kalin's (2020) arguments from the interaction between allomorphy and infixation are nuanced and novel, and may help untangle some of the persistent problems in adjudicating between the theories.
- But Zukoff's (to appear) [esp. Version 2:§5] introduction of alignment-driven (in addition to phonotactically-driven) infixation may re-complicate some of the questions.

2 Tagalog

- The classic case of (alleged) phonologically-driven infixation is um-infixation in Tagalog:
 - \rightarrow In Tagalog (Austronesian, Philippines), the actor focus (AF) morpheme /um/ alternates between a prefix and an infix (Schachter & Otanes 1972), seemingly to optimize syllable structure.
- \star There has been a long debate about the data and the analysis. Here's how it went:

2.1 McCarthy & Prince's (1993a) analysis

- McCarthy & Prince (1993a:101) (following Prince & Smolensky [1993] 2004:§4.1) assume the following data:
- (1) **Distribution of Tagalog AF** -um- morpheme (according to McCarthy & Prince 1993a)
 - a. V-initial root: abot 'reach for' abot abot
 - b. C-initial root: /sulat/ 'call' \rightarrow [s<um>ulat]
 - c. CC-initial root: /gradwet/ 'graduate' $\rightarrow [gr < um > adwet]$
- When the root is underlyingly vowel-initial (1a), the AF morpheme surfaces as a prefix.
- However, when the root begins in a consonant (1b,c), the AF morpheme surfaces as an infix.
 - With initial single consonants (6b), the AF morpheme surfaces after the root-initial C.

- With initial clusters (6c), the AF morpheme surfaces after the cluster.
- McCarthy & Prince (1993a:103–104) argue that this distribution can be explained in full by the ranking:
- (2) M&P's Tagalog Ranking: NoCodA ≫ Align-AF-L
- When there's a single root-initial consonant (3):
 - Prefixation puts the [m] of /um/ in coda position (3a), violating NoCoda.
 - Infixing past the root-initial /s/ (3b) allows that [m] to surface as an onset, creating no codas beyond the root-final one.
 - Codas can't be gotten rid of (3f) by an unfaithful phonological mapping (FAITH-IO >> NOCODA), so the root-final coda has to stay.
 - This also means that you can't delete the AF /m/ (3e).
 - Since Align-AF-L is evaluated gradiently, infixing any further into the word (3c,d) will incur unnecessary violations.

(3) Infixing past the first C to avoid a NoCoda violation: s < um > ulat (1b)

/sulat, um/	FAITH-IO	NoCoda	ALIGN-AF-L	Align-Root-L	Contig
$a< \mathbf{um}>. \mathrm{su.lat.}$		**!		**	i
b. s <u.m>u.lat.</u.m>		*	*		*
c. $su.l < \mathbf{u.m} > at.$		*	**!*		*
d. .su.la.t $<$ um $>$.		*	**!***		1
e< u >.su.lat.	*!	*		*	ı
$f.$.s< $\mathbf{u.m}$ > $\mathbf{u.la}$.	*!		*		*

- This analysis predicts that /um/ will infix past an entire initial cluster (4c), because infixing past just the first consonant (4b) will create a coda.
 - * Assume rising-sonority clusters are parsed as complex onsets.

(4) Infixing past the first CC to avoid a NoCoda violation: gr < um > adwet (1c)

/gradwet, um/	NoCoda	Align-AF-L	Align-Root-L	Contig
a. .< $um>.gra.dwet.$	**!		**	
b. $g < um > .ra.dwet$.	**!	*		*
c. $\operatorname{gr} < \mathbf{u.m} > \operatorname{a.dwet}.$	*	**		*
d. . gra.dwe.t $<$ um $>$.	*	***!***		

- This analysis also predicts that you will not get infixation (5b,c), but rather prefixation (5a) for vowel-initial roots, because prefixation does not create a new coda.
 - Since prefixation and infixation are equivalent with respect to the relevant markedness constraint, the preferred alignment is able to surface.

(5) Prefixation when it doesn't violate NoCoda: <um>abot (1a)

/abot, um/	NoCoda	Align-AF-L	Align-Root-L	Contig
a. 🔊 . <u.m>a.bot.</u.m>	*		**	
ba.< um >.bot.	**!	*		*
ca.b< u.m >ot.	*	*!*		*
da.bo.t< um >.	*	*!***		

2.2 Revising the data

- However, subsequent work showed that this isn't the whole story about the data:
 - Orgun & Sprouse (1999:204) find that, for CC-initial roots, at least some speakers exhibit variation in the site of infixation, between post-C₁ and post-C₂ (6c).
 - McCarthy (2003:91) clarifies, following the original description by Schachter & Otanes (1972), that all "vowel-initial" words surface with an epenthetic initial glottal stop (6a).

(6) Distribution of Tagalog AF -um- morpheme

- a. V-initial root: abot/ 'reach for' abot/ 'reach for' abot/
- b. C-initial root: /sulat/ 'call' \rightarrow [s<um>ulat]
- c. CC-initial root: /gradwet/ 'graduate' \rightarrow (i) $[g<\mathbf{um}>radwet] \sim$ (ii) $[gr<\mathbf{um}>adwet]$
- * We could alternatively assume that the initial glottal stops are underlying, which would simply collapse the (a) cases with the (b) cases. This may become useful later...
- * These facts transform the analysis from being driven by NOCODA to having to be driven by ONSET.
- When the root begins in a single consonant (7):
 - Onset rules out full left-alignment of the affix (7a).
 - If DEP-C is next highest-ranked, it will rule out repairing that ONSET via epenthesis (7b) as long as other candidates remain.
 - Since there are candidates (7c-e) that avoid these two problems at the expense just of Align-AF-L, the evaluation selects the infixal order where the affix is closest to the left (7c), i.e. after C₁.

(7) Infixing past the first C to avoid an Onset violation: s < um > ulat [.su.mu.lat.] (6b)

/sulat, um/	Onset	Dep-C	A LIGN-AF-L	NoCoda	Align-Root-L	Contig
a <um>.su.lat.</um>	*!			**	**	ı
b <u>?</u> < um >.su.lat.		*!	*	**	***	I
c. 🖙 .s< u.m >u.lat.			*	*		*
$d.$.su. $l < \mathbf{u.m} > at.$			**!*	*		*
esu.la.t $<$ um $>$.			**!***	*		

- When the root is underlyingly vowel-initial (8):
 - There's no way to avoid an Onset violation without epenthesis, because both morphemes are vowelinitial (8a,d).
 - Since the desire to satisfy these two constraints is what motivates infixation (Align-AF-L violation), prefixation + epenthesis (8b) is optimal here.

(8) No infixation if it doesn't fix Onset: $\langle um \rangle abot$ [.?u.ma.bot.] (6a)

/abot, um/	Onset	Dep-C	Align-AF-L	NoCoda	Align-Root-L	Contig
$a< \mathbf{u.m} > a. $ bot.	*!			* I	**	
b. ☞ . <u>?</u> < u.m >a.bot.		*	*	*	***	l
c. $\underline{?}a.\underline{?}<\mathbf{um}>.bot.$		**!	***	**	*	*
$d.$ $a.b < \mathbf{u.m} > ot.$	*!		**	*		*
e. $\underline{?}a.b < \mathbf{u.m} > ot.$		*	**!*	*	*	*
$f.$. $\underline{?}a.bo.t < \mathbf{um} > .$		*	**!***	*	*	

- For roots beginning in two consonants, just like those beginning in one, infixation can avoid violation of both Onset and Dep.
 - → The variable outputs can be derived if we have a variable ranking between the two lower-ranked constraints, NoCoda and Align-AF-L.

- When Align-AF-L \gg NoCoda (9):
 - It will be preferable to align the affix closer to the left (9c), even though it creates a coda, than to place it after the cluster (9d), which avoids the coda at the expense of an extra ALIGN violation.
- (9) Variable infix position in CC-initial roots: ALIGN-AF-L \gg NOCODA $\rightarrow g < um > radwet$ (6c.i)

/gradwet, um/	Onset	Dep-C	Align-AF-L	NoCoda	Align-Root-L	Contig
$a.$.< \mathbf{um} >.gra.dwet.	*!			**	**	
b. $\underline{?}$ < um >.gra.dwet.		*!	*	**	***	I
c.			*	**		*
d. .gr $<$ u.m $>$ a.dwet.			**!	*		*
egra.dwe.t $<$ um $>$.			***!***	*		

• On the other hand, when NoCoda > Align-AF-L (10), the reverse will be true:

(10) Variable infix position in CC-initial roots: NoCoda \gg Align-AF-L $\rightarrow gr < um > adwet$ (6c.ii)

/gradwet, um/	Onset	Dep-C	NoCoda	Align-AF-L	Align-Root-L	Contig
$a.$.< \mathbf{um} >.gra.dwet.	*!		**		**	
b. $\underline{?}$ < um >.gra.dwet.		*!	**	*	***	I
c. .g $<$ um $>$.ra.dwet.			**!	*		*
$d. \bowtie .gr < \mathbf{u.m} > a.dwet.$			*	**		*
egra.dwe.t $<$ um $>$.			*	***!***		

- * Klein (2005:968-969) accounts for the variation in (6c) by positing a variable ranking between NoCoda and *ComplexOnset.
 - This predicts covariation between infix placement (post- C_1 vs. post- C_2) and the syllabification of medial clusters ($[...d]_{\sigma}[w...]_{\sigma}$ vs. $[...]_{\sigma}[dw...]_{\sigma}$): [gum.rad.wet] vs. [gru.ma.dwet].
- ightarrow There's no evidence for variable syllabification, so we should prefer the analysis with variation involving ALIGN.
- * This works, as long as we assume that medial rising sonority clusters are always parsed as complex onsets.
 - The activity of NoCoda means that we generate medial complex onsets.
 - If we needed to generate heterosyllabic parsing ([VC.CV] not [V.CCV]), we'd need *COMPLEXONSET to rank higher than NoCoda.
 - \rightarrow This would categorically result in the post-C₁ outcome (\checkmark (9c)/ \checkmark (10c)), contrary to fact.
- * Indeed Zuraw (2007:298–299, fn. 27) asserts that medial clusters are always heterosyllabic in Tagalog.
 - \rightarrow This would break the analysis.
 - But other sources (e.g. Schachter & Otanes 1972, French 1988) aren't super clear on Tagalog's syllabification, so maybe it's still viable.

2.3 Zuraw (2007)

- Regardless of the syllabification issues, Zuraw (2007) adduces additional evidence that leads to a slightly different analysis, which sidesteps syllabification entirely.
- Zuraw (2007:esp. 295) finds that different types of initial clusters have different frequency distributions for the two different infix positions:
 - \circ For ST clusters (and /sm/), speakers prefer the post-C₂ position to the post-C₁ position (11a).
 - \circ But for CR clusters (except /sm/), speakers prefer the post-C₁ position to the post-C₂ position (11b).
- (11) Preferred infix site by cluster type
 - a. ST: #ST < um > V... > #S < um > TV...
 - b. CR: $\#C < \mathbf{um} > RV... > \#CR < \mathbf{um} > V...$

- She proposes using Contiguity constraints relativized to different cluster types to capture this difference.
- One way to capture frequency-based variation is by using **weighted constraints** in Harmonic Grammar (Legendre, Miyata, & Smolensky 1990, Smolensky & Legendre 2006), where the weights are fitted to the data using a Maximum Entropy (**MaxEnt**) model (Goldwater & Johnson 2003, Hayes & Wilson 2008).
 - Heuristically, the *relative weights* of the constraints determined by MaxEnt for the variable outputs would map onto the *relative rankings* of the constraints in OT if the differences were categorical.
- → So, abstracting away from the variation and assuming categorical outputs, we can derive the distribution by ranking a constraint against splitting ST clusters (CONTIG-ST) above ALIGN-AF-L:
 - When there's an initial ST cluster (12):
 - The high ranking of Onset and Dep-C continue to rule out left-aligning /um/ (12a,b).
 - The minimal infixation candidate (12c) is now ruled by relatively high-ranking Contig-ST.
 - \circ For these clusters, the least displaced possible infixal candidate is thus (12d), where the /um/ lands after the initial cluster.

(12) Post- C_2 position for ST-initial roots: (nonce) sp < um > in (11a)

/spin, um/	Onset	Dep-C	Cntg-ST	ALN-AF-L	Aln-Root-L	Cntg-CR
$a. < \mathbf{um} > \overline{\mathrm{sp}} \mathrm{in}$	*!				**	1
b. $\underline{?} < \mathbf{um} > \overline{\text{spin}}$		*!		*	***	
c. s< um >pin			*!	*		
d. 🖙 🛐 < um > in				**		
e. $\overline{\text{spin}} < \mathbf{um} >$				***!*		

- When there's an initial CR cluster (13):
 - Onset and Dep-C still to rule out left-aligning /um/ (13a,b).
 - But now, the fact that the minimal infixation candidate (13c) splits the cluster is not fatal, because it violates only low-ranked Contig-CR.
 - ALIGN-AF-L is now able to rule out all but the minimal infixation candidate (13d-g).

(13) Post-C₁ position for CR-initial roots: g < um > radwet (11b)

/gradwet, um/	Onset	Dep-C	Cntg-ST	ALN-AF-L	Aln-Root-L	Cntg-CR
$a. < \mathbf{um} > \overline{\mathbf{gr}} $ adwet	*!				**	
b. $\underline{?} < \mathbf{um} > \underline{gr} $ adwet		*!		*	***	
c. g <um>radwet</um>				*		*
d. $gr < um > adwet$				**!		ı
e. $\overline{\mathbf{gr}}$ ad $<\mathbf{um}>$ wet				**!**		*
f. $gradw < um > et$				**!***		
g. $gradwet < um >$				**!****		

• Since C-initial roots (14) and V-initial roots (15) don't involve clusters, their analysis works exactly the same as before.

(14) Infixing past the first C to avoid an ONSET violation: s < um > ulat

/sulat, um/	Onset	Dep-C	Cntg-ST	ALN-AF-L	Aln-Root-L	Cntg-CR
a. <um>sulat</um>	*!				**	l
b. $\underline{?}$ < \mathbf{um} > \mathbf{sulat}		*!		*	***	l
c. 🔊 s <um>ulat</um>				*		l
d. $sul < um > at$				**!*		I

(15) No infixation when it doesn't fix Onset: 2<um>abot

/abot, um/	Onset	Dep-C	Cntg-ST	ALN-AF-L	Aln-Root-L	Cntg-CR
a. <um>abot</um>	*!				**	ı
b. ab <um>ot</um>	*!			**		I
c. 🔊 <u>?</u> < um >abot		*		*	***	
d. $\underline{?}a\underline{?}<\mathbf{um}>\mathbf{bot}$		**!		***	*	
e. $\underline{?}ab < \mathbf{um} > ot$		*		**!*	*	I
f. $\underline{?}abot < \mathbf{um} >$		*		**!***	*	l

- \rightarrow One additional upshot of this analysis is that it is not dependent on syllabification.
 - Therefore, it is consistent with medial heterosyllabic parsing, unlike the NoCoda-based analysis.
 - Zuraw (2007) actually uses high-ranked "Align-Stem" (≈Align-Root-L) to generate infixation, rather than high-ranked {Onset ≫ Dep-C}.
 - \circ This amounts to saying that infixation is the default (Align-Root-L \gg Align-AF-L).
 - → This creates a problem for "vowel-initial" roots.
 - Onset must dominate Align-Root-L, because the reverse ranking would block epenthesis as a means of repairing an Onset violation (because it introduces a pre-root segment). This means we'd need the ranking in (16).
 - But the fact that Align-Root-L ≫ Align-AF-L means that we now predict infixation past the first C in these roots, because infixation is the default given the alignment ranking.

(16) Incorrect prediction of Align-Root-L \gg Align-AF-L for V-initial roots

/abot, um/	Onset	Dep-C	Aln-Root-L	Cntg-ST	ALN-AF-L	Cntg-CR
a. <um>abot</um>	*!		**			
b. ab< um >0t	*!				**	
c. © <u>?</u> < um >abot		*	**!*		*	
d. <u>?</u> a <u>?</u> < um >bot		**!	*		***	
e. <u>* ?</u> ab< um >ot		*	*		***	
f. $\underline{?}abot < \mathbf{um} >$		*	*		****!*	

- A way to circumvent the problem is to say that these roots are actually underlyingly /?/-initial.
 - o If so, they will behave exactly like other C-initial roots, e.g. /sulat/.
- ★ However, we still have a Richness of the Base (Prince & Smolensky [1993] 2004) problem here:
 - → If there were vowel-initial roots, they would be predicted to behave differently (as in (16)).
 - o One could tell a story about lexicon optimization (Prince & Smolensky [1993] 2004, McCarthy 1998) based on the isolation forms, but it would be pretty tenuous.

2.4 $P \gg M$ vs. Subcategorization in Tagalog

• The analysis outlined above is a $P \gg M$ approach to infixation:

(17) $P \gg M$ analysis

- a. Assuming the MAP (Zukoff to appear), the morphosyntax wants the AF morpheme to be a prefix (Align-AF-L >> Align-Root-L).
- b. This succeeds in vowel-initial roots, because infixation would not improve on any phonological problems.
- c. This fails in consonant-initial roots, because infixation can avoid more important phonological problem (Onset and Dep-C).
- d. The infixation site is regulated (gradiently) by (morpho)phonological alignment, subject to purely phonology Contiguity constraints.

* What would a Subcategorization approach look like?

- If we assumed that CC-initial roots uniformly infixed after C₂ (following McCarthy & Prince 1993a), then we could say that /um/ wants to attach to the left of the first vowel/mora:
- (18) ACTOR. FOCUS $\Leftrightarrow um / [(C)(C)_{V...}]_{STEM}$ (cf. Paster 2009:19)
- (19) ALIGN($/\text{um}/_{\text{ACTOR.FOCUS}}$, R; μ_1 , L) (cf. Yu 2007:91 on Leti)
- In order to account for the difference in behavior for different cluster types (per Zuraw 2007) with Pasterstyle subcat frames, we could consider specifying a distinct frame for #CR-roots (20a).
 - \rightarrow Since (20a) specifies two necessary segments whereas (20b) specifies only one, the Subset Principle / Elsewhere Condition should preferentially select (20a) when both are compatible.
- (20) a. Actor.Focus $\Leftrightarrow um \ / \ [C_R...]_{\text{Stem}}$ b. Actor.Focus $\Leftrightarrow um \ / \ [(C)(C)_V...]_{\text{Stem}}$
 - \circ If we assume that the elsewhere condition is *gradient* rather than *categorical* (not something usually assumed), we could assign some frequency distribution to both exponents in the case of #CR-root.
 - * But this won't generate any frequency for post-C₁ infixation in the case of an #ST-root.
- Alternatively, we could consider the following:
- (21) a. ACTOR.FOCUS $\Leftrightarrow um / [(C)(C)_{V...}]_{STEM}$ b. ACTOR.FOCUS $\Leftrightarrow um / [C_{...}]_{STEM}$
 - For V-initial stems, only (21a) would apply, so we'd still have categorical prefixation.
 - \circ For C-initial stems, both frames would have the same result (because after the first C is the same place as before the first V), so we'd always get infixation in the right place.
 - o For CC-initial stems, (21a) generates post-C2 infixation while (21b) generates post-C1 infixation.
- If all CC-initial stems had the same free-variation distribution between the two infixal positions, then this analysis would work.
 - \circ If we assume that optional segments don't count for the determination of specificity of subcat frames, then the two are equally specific, and we might reasonably assume a 50/50 distribution.
 - * If we follow Kalin & Rolle (2021), then indeed the optional segments shouldn't even be included.
 - \rightarrow But this gives us no mechanism for generating the distinction between ST and CR stems.
- \star It seems that subcategorization is going to have trouble accounting for the cluster-type differences.

3 Alignment-driven infixation and "anti-optimization"

- As always, one of the arguments against $P \gg M$ for infixation is that there are some cases which appear to be non-/anti-optimizing (Paster 2006, 2009, Yu 2007, Kalin 2020, Kalin & Rolle 2021, a.o.).
 - i.e., the structures resulting from infixation look like they're equally/more phonologically marked than what would have resulted from prefixation/suffixation.
- One of the cases frequently mentioned in this context is actor focus infixation in Atayal (Austronesian, Taiwan; Egerod 1965, Rau 1992; cf. Huang 2018) exemplified in (22).
 - \circ In this pattern, the morpheme m is infixed after the first consonant of the root.
 - This happens even when this position sits inside a long consonant cluster (22d-f).

¹ This discussion is based on §5.2 of Version 2 of Zukoff (to appear), available on Lingbuzz.

(22) Atayal animate actor focus (Yu 2007:35, ex. (45); data from Egerod 1965:263–266)

	Root	$\mathbf{Root} + \mathbf{AF}$	Gloss
a.	qul	qmul	'snatch'
b.	kat	kmat	'bite'
c.	kuu	$\mathrm{k}m\mathrm{u}\mathrm{u}$	'too tired, not in the mood'
$\mathrm{d}.$	hŋu?	$\mathrm{h}m$ ŋu?	'soak'
e.	skziap	kmziap	'catch'
f.	$_{ m sbil}$	$\mathrm{s}m\mathrm{bil}$	'leave behind'

- Yu (2007) argues that this pattern cannot be described in terms of phonological optimization, and thus serves as counter-evidence to the $P \gg M$ model.
 - i.e., nothing phonological is being gained by infixation relative to prefixation both (can) result in long consonant sequences.
- \rightarrow However, this argument does not consider alignment itself as a trigger for output optimization.
 - If ALIGN-ROOT-L outranks ALIGN-AF-L, alignment on its own will generate infixation (23).

(23) Atayal AF infixation

/kuu, m/	ALIGN-ROOT-L	Align-AF-L	Contiguity
a. m -kuu	*!		
b. 🔊 k <m>uu</m>		*	*
c. kuu-m		**!(*)	

- * Despite the typical representation in (22), the *m* infix is usually/always preceded by a schwa / reduced vowel on the surface (Yu 2007:35, n. 12): i.e., *kmuu* might be more accurately transcribed [kəmuu].
- → If this schwa were underlying (see Huang 2018, contrary to most accounts), then this case might be analyzable as prosodic optimization, just like Tagalog. Indeed, Atayal does not allow (word-initial) onsetless syllables (Rau 1992:21).
- There's additional morphological evidence that may speak in favor of the alignment-driven infixation analysis:
 - \circ Some active/agent stems built with the m morpheme display infixal ordering, but many show prefixal ordering instead or in addition (see the forms in Egerod 1965:263–267).
 - For some roots, both an infixal and prefixal form is attested, but with differences in meaning.
- → Per Rau (1992:37–38): infixal forms are transitive (24a) while prefixal forms are intransitive/stative (24b):
 - (24) Infix/prefix alternations in Atayal (see Egerod 1965:263–267, Blevins 2014:12)
 - a. h < m > utaw [həmutaw] 'drop'
 - b. m-hutaw [məhutaw] 'fall'
 - * Blevins (2014:11–12) asserts that there are two different /m/ morphemes, such that this is not a pre-fix/infix alternation of the same morpheme.
 - This suggests that syntactic differences correlate with ordering differences (à la the MAP; Zukoff to appear).
 - Prefixal ordering is generated when the MAP (plus any attendant relevant default rankings) transmits the ranking Align-AF-L ≫ Align-Root-L.
 - \circ Infixal ordering is generated when it transmits the reverse ranking Align-Root-L \gg Align-AF-L (as shown in (23)).
 - This would be exactly equivalent to what we find with the Reflexive in Arabic (Zukoff to appear:§4):
 - \circ Infixation occurs when the morpheme is the first head to combine with Root (25/26a).
 - Prefixation occurs when the morpheme is not the first head to combine with Root (25/26b).

(25)Arabic Forms with Reflexive /t/ (for example root \sqrt{ktb} 'write'; data from McCarthy 1981:384)

Position		\mathbf{Form}	Proposed morphosyntax	Example form	Translation	
a.	Infixal	VIII	Reflexive	${m k}{<}{m t}{>}ataba$	'write, be registered'	
b.	Prefixal	V VI X	Reflexive of the Causative Reflexive of the Applicative Causative of the Reflexive	$egin{aligned} \underline{t}akattaba \ \underline{t}akataba \ s\underline{t}aktaba \end{aligned}$	(constructed form) 'write to each other' 'write, make write'	

(26)Syntactic structures with Reflexive

Form VIII k < t > ataba

• Projecting this analysis onto the Atayal case (repeated in (27)), we get predict structures like (28).

(27)Infix/prefix alternations in Atayal

- h < m > utaw [həmutaw] 'drop'
- m-hutaw [məhutaw] 'fall'

(28)Syntactic structures with Atayal AF

h < m > utaw (transitive)

m-hutaw (intransitive)

- A structure like this would seem to make sense if X is something like Stative or some other valence-reducing head and AF is some sort of active Voice head or v.
- * Therefore, assuming that infixation in Atayal is driven by alignment constraints themselves, rather than prosodic optimization, we capture not only the surface phonological behavior, but also the morphosyntacticallycorrelated prefix/infix alternations.
- → This approach gives a roadmap for addressing other "non-/anti-optimizing" cases of infixation presented in Yu (2007) and elsewhere, in a way that is actually consistent with optimization.

Subcategorization and pivots 4

• Of course, subcategorization could get the Atayal case easily (minus accounting for the morphosyntax of the prefix/infix alternation):

(29) ACTOR. FOCUS
$$\Leftrightarrow m / [C ...]_{STEM}$$

(30) ALIGN(
$$/m/_{ACTOR,FOGUS}$$
, L; C₁, R)

- In Yu's (2007) typological survey of infixation, he finds that this subcat frame (after the first consonant) is one of a fairly small number of locations where infixes can end up.
 - \rightarrow He calls these positions (or rather, the units delimiting the positions) **pivots**.
 - \circ The set of possible pivots is given in (31):
- (31) Possible pivots (Yu 2007:67, adapted from Kalin & Rolle 2021:7; parentheses = uncommon)

\mathbf{Edge}	Prominence pivots	
First consonant	(Last consonant)	Stressed foot
First vowel	Last vowel	Stressed vowel
(First syllable)	Last syllable	Stressed syllable

- According to this table, there are four units that can function as pivots:
- (32) **Pivot units:** consonant (non-syllabic segment), vowel (syllabic segment), syllable, foot
- And there are three features that can identify these units:
- (33) Pivot features: first (leftmost), last (rightmost), stressed
- Given that (non-syllabic) consonants can't be stressed, the cross-classification of the units and features is nearly fully fleshed out, with the only exception being first/last foot.
- Per Yu, languages can employ subcat frames aligning morphemes to either the left or the right of any of these pivots, but only these pivots.
 - Absent are other conceivable phonological entities, like a specific consonant or a vowel with specific features, etc. (Yu 2007:218ff.).
 - \rightarrow This is noteworthy because Paster (2006, 2009) says that these kinds of entities *can* define subcat frames for PCSA (Kalin & Rolle 2021:§4.1).
- * While Yu identifies the pivots in (31) through his typological survey, the way he implements subcategorization (inviolable opposite-edge alignment) doesn't always actually refer to that pivot.
 - \rightarrow For example, he formalizes "pre-V₁" position using moras:
- (34) Tagalog (19): $ALIGN(/um/_{AGTOR,FOGUS}, R; \mu_1, L)$ (cf. Yu 2007:91 on Leti)
- Another conceptual problem with his account is the status of first/last.
 - \rightarrow Kalin & Rolle (2021) are able to recast this as "closest" (which may or may not be conceptually stronger) by positing a step of edge-selection *before* infixation.
- Putting aside the subcategorization implementation questions, we should consider how this notion of pivots might relate to P ≫ M.
- \rightarrow The fact that first/last consonant/vowel defines most cases of infixation, this seems largely compatible with the P \gg M alignment-based view I introduced above.
 - Displacement from the edge should be minimal (because of gradient alignment), so we should observe mostly first/last positions.
 - In phonology-optimizing cases involving syllable structure, it should position itself with respect to consonants and vowels.
 - In alignment-optimizing cases, it should position itself immediately inside the stem in terms of segments. If a language has relatively consistent phonological structures for roots/stems, this is likely to look like positioning relative to a consonant or vowel.

- The prominence pivots are a little trickier. Here's some data from Samoan in (35):
 - The Samoan plural is marked by infixal reduplication.
 - This morpheme is always CV, copying the stressed syllable, which it immediately precedes.
 - Stress is rigidly on the penultimate mora.

(35) Samoan plural (Yu 2007:24, citing Mosel & Hovdhaugen 1992:221–222)

tóa	'brave'	< <u>to</u> >tóa
már	`ashamed'	$<$ $\underline{\mathrm{ma}}>$ $\mathrm{m\acute{a}}$:
alófa	'love'	a: $<$ $\underline{lo}>$ lófa
galúe	'work'	ga: $<$ $\underline{lu}>$ lúe
arvága	'elope'	a:< <u>va</u> >vága
$\operatorname{atam\'{a}i}$	'clever'	$ata < \underline{ma} > m\acute{a}i$
ma?alíli	'cold, feel cold'	$ma?a{<}\underline{li}{>}líli$
to?úlu	'fall, drop'	to< <u>?u</u> >?úlu

• Yu would account for this with the following subcategorization constraint:

(36) Samoan: ALIGN(/RED/_{PL}, R; $\acute{\sigma}$, L)

[could also use (stressed/final) foot]

- * Can we do this with $P \gg M$? Yes, if stress constraints outrank Align-Pl-R.
- We can derive penultimate stress w/ foot-free stress constraints *LAPSER ([* $\sigma\sigma\#$]) and NonFin ([* $\sigma\#$]):

(37) Simplex stress

/ale	ofa/		*LapseR	NonFin
a.		alofá		*!
b.	啜	alófa		I
c.		álofa	*!	

- If these stress constraints, plus a constraint demanding that stress be identical between the derivative and its base (IDENT[stress]-BD), outrank ALIGN-PL-R, we derive the outcome where the reduplicant tucks in right before the stressed syllable (38e).
 - If it comes any further to the right, it will either displace the stress too far to the left (38a) or cause stress to fall on a different syllable than in the base (38b-d).
 - \circ The pre-stress position (the antepenult) is the rightmost position that does not disrupt the original stress pattern ((38e) \succ (38f)).

(38) Stress and infixation

Strong and immediate					
Base: [alófa]		l			
INPUT: /RED _{PL} , alofa/	*LapseR	NonFin	IDENT[stress]-BD	Align-Pl-R	
a. $al \acute{o} fa < \underline{fa} >$	*!	 			
b. $alofá < \underline{fa} >$		1	· *!*		
c. alo< <u>fa</u> >fá		*!	*!*	**	
d. $alo < \underline{f}\underline{a} > fa$		<u> </u>	*!	**	
e. r a< <u>lo</u> >lófa		l	l	****	
$f.$ $<\underline{a}>$ alófa		<u> </u>		*****!	

- → This works well because we can say that the infix is oriented towards the same edge where stress is regulated (the right edge).
 - In most of the cases that Yu (2007:Ch. 4.7) identifies, it seems like the two edges match up.
 - Not all of them are amenable to such a simple analysis (but somebody should try...).

5 Infixation and allomorphy (Kalin 2020)

- To my mind, the best argument against $P \gg M$ for infixation comes from Kalin's (2020) work on the interaction between infixation and allomorphy.
 - Here are her findings, as summarized in her Appendix B (pp. 43–44):

(39) On suppletive allomorphy involving an infix

- a. Suppletive allomorphs may differ with respect to pivot/placement (§3.1)
- b. Suppletion involving an infix may be lexically, morphologically, phonologically, or prosodically conditioned (§3.2)
- c. Conditions on exponent choice are distinct from an exponent's pivot/placement (§3.3)
- d. Suppletive allomorphs share an edge orientation (§3.4)
- e. Suppletion is conditioned based on the underlying form of the stem, at the stem edge identifiable via edge orientation (§3.5)
- f. The surface (infixed) environment of an infix cannot condition suppletion (§3.6)

(40) On non-suppletive infix allomorphy

- a. Non-suppletive infix allomorphy is conditioned only in surface (infixed) positions (§4.1)
- b. No hypothetical position for an infix apart from its surface (infixed) position can (§4.2) induce non-suppletive allomorphy
- c. An infix may condition phonological stem changes only in its surface (infixed) position (§4.3)
- The conclusions regarding non-suppletive allomorphy are completely consistent with a $P \gg M$ model, because they say that phonologically-driven allomorphy is local and transparent.
 - Some of the suppletive allomorphy conclusions are consistent too, especially (39d) given a system where alignment is sensitive to morphosyntactic features (and thus will apply equally to different exponents of the same morpheme).
- * However, as Kalin (2020) points out, most of the conclusions about suppletive allomorphy do not appear to be consistent with $P \gg M$.
 - E.g., if PCSA is governed by P >> M via something like PRIORITY (Bonet, Lloret, & Mascaró 2007, Mascaró 2007), then PCSA should be able to be conditioned by infix location, not just the edge (39e,f).
- Many of Kalin's analyses need to be made more precise, and certain $P \gg M$ -based alternative analyses should be pursued further, but overall her results seem fairly strong.
- * Coupled with her refinements of subcategorization into "Conditions on Insertion" and "Conditions on Position" (Kalin & Rolle 2021), this seems like a compelling theory of the phonology-morphology interface (as much as I don't want to admit it).

References

Blevins, Juliette. 2014. Infixation. In Rochelle Lieber & Pavol Štekauer (eds.), The Oxford Handbook of Derivational Morphology, 1-33. Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199641642.013.0009.

Bonet, Eulàlia, Maria-Rosa Lloret & Joan Mascaró. 2007. Allomorph Selection and Lexical Preferences: Two Case Studies. Lingua. International review of general linguistics. Revue internationale de linguistique générale 117:903-927.

Egerod, Søren. 1965. Verb Inflexion in Atayal. Lingua 15:251-282. doi:10.1016/0024-3841(65)90015-X.

French, Koleen Matsuda. 1988. Insights into Tagalog Reduplication, Infixation and Stress from Nonlinear Phonology. University of Texas at Arlington, Master's Thesis. https://www.proquest.com/docview/193705670.

Goldwater, Sharon & Mark Johnson. 2003. Learning OT Constraint Rankings Using a Maximum Entropy Model. In Jennifer Spenader, Anders Eriksson & Östen Dahl (eds.), Proceedings of the Stockholm Workshop on Variation within Optimality Theory, 111-120. http://homepages.inf.ed.ac.uk/sgwater/papers/OTvar03.pdf.

Hayes, Bruce & Colin Wilson. 2008. A Maximum Entropy Model of Phonotactics and Phonotactic Learning. *Linguistic Inquiry* 39(3):379-440. doi:10.1162/ling.2008.39.3.379.

Huang, Hui-chuan J. 2018. The Nature of Pretonic Weak Vowels in Squliq Atayal. Oceanic Linguistics 57(2):265-288. doi:10.1353/ol.2018.0012.

Kalin, Laura. 2020. Infixes Really are (Underlyingly) Prefixes/Suffixes: Evidence from Allomorphy on the Fine Timing of Infixation. Ms., Princeton. https://ling.auf.net/lingbuzz/005581.

Kalin, Laura & Nicholas Rolle. 2021. Deconstructing Subcategorization: Conditions on Insertion versus Position. Ms., Princeton & Leibniz - ZAS, May 2021. https://ling.auf.net/lingbuzz/005975.

Klein, Thomas B. 2005. Infixation and Segmental Constraint Effects: UM and IN in Tagalog, Chamorro, and Toba Batak. Lingua 115(7):959–995.

Legendre, Géraldine, Yoshiro Miyata & Paul Smolensky. 1990. Harmonic Grammar – A Formal Multi-Level Connectionist Theory of Linguistic Well-Formedness: Theoretical Foundation. ICS Technical Report 90-5, University of Colorado, Boulder, CO.

Mascaró, Joan. 2007. External Allomorphy and Lexical Representation. Linguistic Inquiry 38(4):715-735.

McCarthy, John J. 1981. A Prosodic Theory of Nonconcatenative Morphology. Linguistic Inquiry 12(3):373-418.

——. 1998. Morpheme Structure Constraints and Paradigm Occultation. In M. Catherine Gruber, Derrick Higgins, Kenneth Olsen & Tamra Wysocki (eds.), Proceedings from the Annual Meeting of the Chicago Linguistic Society 32, Part II: The Panels, 123–150. Chicago: Chicago Linguistic Society.

——. 2003. OT Constraints are Categorical. Phonology 20(1):75-138. doi:10.1017/S0952675703004470.

McCarthy, John J. & Alan Prince. 1986. Prosodic Morphology. Linguistics Department Faculty Publication Series 13 (1996 version).

——. 1993a. Generalized Alignment. In Geert Booij & Jaap van Marle (eds.), Yearbook of Morphology 1993, 79–153. Kluwer. doi:10.1007/978-94-017-3712-8 4.

——. 1993b. Prosodic Morphology I: Constraint Interaction and Satisfaction. Linguistics Department Faculty Publication Series 14 (2001 version).

Mosel, Ulrike & Even Hovdhaugen. 1992. Samoan Reference Grammar. Oslo: Scandinavian University Press.

Orgun, Cemil Orhan & Ronald L. Sprouse. 1999. From "MParse" to "Control": Deriving Ungrammaticality. *Phonology* 16(2):191–224. doi:10.1017/S0952675799003747.

Paster, Mary. 2006. Phonological Conditions on Affixation. PhD Dissertation, University of California, Berkeley.

——. 2009. Explaining Phonological Conditions on Affixation: Evidence from Suppletive Allomorphy and Affix Ordering. Word Structure 2(1):18-37. doi:10.3366/E1750124509000282.

Prince, Alan & Paul Smolensky. [1993] 2004. Optimality Theory: Constraint Interaction in Generative Grammar. Malden, MA: Blackwell Publishing.

Rau, Der-Hwa Victoria. 1992. A Grammar of Atayal. PhD Dissertation, Cornell University.

Schachter, Paul & Fe T. Otanes. 1972. Tagalog Reference Grammar. Berkeley: University of California Press.

Smolensky, Paul & Géraldine Legendre. 2006. The Harmonic Mind. Cambridge, MA: MIT Press.

Wolf, Matthew. 2008. Optimal Interleaving: Serial Phonology-Morphology Interaction in a Constraint-Based Model. PhD Dissertation, University of Massachusetts, Amherst.

Yu, Alan C. L. 2007. A Natural History of Infixation. Oxford: Oxford University Press.

Zukoff, Sam. to appear. The Mirror Alignment Principle: Morpheme Ordering at the Morphosyntax-Phonology Interface.

*Natural Language & Linguistic Theory. https://ling.auf.net/lingbuzz/005374.

Zuraw, Kie. 2007. The Role of Phonetic Knowledge in Phonological Patterning: Corpus and Survey Evidence from Tagalog Infixation. Language 83(2):277-316.