Reduplicative Opacity in Malay Revisited: Preliminary Phonetic Evidence for Variable "Recopying" and BRCT

> Jian-Leat Siah¹, Sam Zukoff¹, Feng-fan Hsieh² ¹UCLA, ²National Tsing Hua University

AMP 2024 Rutgers University · November 1–3, 2024

Slide available at www.samzukoff.com/amp2024

Introduction			
Introduction	on		

\star What is the right theory of reduplication?

Introduction			
Introductio Opacity	on		

• The debate over this question has focused in large part on *opaque reduplication-phonology interactions*:

Introduction			
Introductio Opacity	on		

- The debate over this question has focused in large part on *opaque reduplication-phonology interactions*:
- (1) **Overapplication:** A process *applies* in a reduplicated word even though the environment *isn't met*.

Introduction			
Introductio Opacity	on		

- The debate over this question has focused in large part on *opaque reduplication-phonology interactions*:
- (1) **Overapplication:** A process *applies* in a reduplicated word even though the environment *isn't met*.
- (2) **Underapplication:** A process *doesn't apply* in a reduplicated word even though the environment *is met*.

Introduction			
Introductio Opacity	on		

- The debate over this question has focused in large part on *opaque reduplication-phonology interactions*:
- (1) **Overapplication:** A process *applies* in a reduplicated word even though the environment *isn't met*.
- (2) **Underapplication:** A process *doesn't apply* in a reduplicated word even though the environment *is met*.
- Different theories differ in exactly which types of patterns they predict.
- \rightarrow Understanding the empirical landscape is crucial to decide between theories.

Introduction			
Introductio	on		

- One putative pattern stands out: nasal spreading in Malay.
 - \circ As reported by Onn (1976), it constitutes "recopying" over application.
 - Can only be analyzed using a parallelist theory like Base-Reduplicant Correspondence Theory [BRCT] (McCarthy & Prince 1995; Ahmad 2005).

Introduction			
Introductio	on		

- One putative pattern stands out: nasal spreading in Malay.
 - As reported by Onn (1976), it constitutes "recopying" overapplication.
 Can only be analyzed using a parallelist theory like Base-Reduplicant
 - Correspondence Theory [BRCT] (McCarthy & Prince 1995; Ahmad 2005).
- Proponents of other theories of reduplication have questioned the veracity of this data (Inkelas & Zoll 2005, Kiparsky 2010, McCarthy, Kimper, & Mullin 2012).

Introduction			
Introductio	on		

- One putative pattern stands out: nasal spreading in Malay.
 - $\circ\,$ As reported by Onn (1976), it constitutes "recopying" overapplication. $\circ\,$ Can only be analyzed using a parallelist theory like Base-Reduplicant
 - Correspondence Theory [BRCT] (McCarthy & Prince 1995; Ahmad 2005).
- Proponents of other theories of reduplication have questioned the veracity of this data (Inkelas & Zoll 2005, Kiparsky 2010, McCarthy, Kimper, & Mullin 2012).
- To our knowledge, the pattern has not been phonetically documented.
 ⇒ It is urgent to resolve this question.

Introduction			
Introduction Preview	on		

- This paper reports new acoustic documentation of the interaction between nasal spreading and reduplication in Malay.
- Our preliminary findings confirm the existence of the putative "recopying" pattern reported by Onn (1976), but as part of a system of free variation.
- The confirmation of the recopying pattern bolsters the argument for BRCT.

	Background		
Roadmap			

§1 Introduction

- §2 Background
- §3 Experiment
- §4 Analysis
- §5 Conclusion

	Background		
Backgroun Malay	ıd		

- Malay (*Bahasa Melayu*) belongs to the Western Malayo-Polynesian subgroup of the Austronesian language family (Blust 2013:30-32).
- It is primarily spoken in Malaysia, Brunei, Singapore and Indonesia.

	Background		
Backgroun	ıd		
Nasal spreading			

- In Malay, nasalization on vowels and glides is fully allophonic:
 - $\circ\,$ Nasal stops trigger iterative rightward spread of nasalization onto vowels and glides.
 - $\circ\,$ Spread is blocked by supralary ngeal consonants (e.g., k, s, l, etc.).
 - \circ All other vowels/glides surface as oral.
- (3) Distribution of nasalized vowels/glides in Johore Malay (Onn 1976:69-70)

'to drink'	[mĩnõm]		
'to eat'	[mãkan]	$(*[m\tilde{a}k\boldsymbol{\tilde{a}}n],*[m\boldsymbol{a}kan])$	
'to rise'	[baŋõn]	$(*[b \mathbf{\tilde{a}} \mathbf{\eta} \mathbf{\tilde{o}} \mathbf{n}], *[b \mathbf{a} \mathbf{\eta} \mathbf{o} \mathbf{n}])$	
'to be luxurious'	$[m\tilde{e}\tilde{w}\tilde{a}\tilde{h}]$	$(\leftarrow /\text{mewah}/)$	
'supervision'	[pəŋãwãsan]	$(\leftarrow /p \verb"aŋ-awas-an/)$	Alternations
'central focus'	[pənə̃ŋãĥãn]	$(\leftarrow / \texttt{pəŋ-təŋah-an} /)$	Alternations

	Background			
Backgroun Interaction betwe	d en nasal spreadin	g and reduplication	on	

• Malay has total reduplication. How does this interact with nasal spreading?

	Background			
Backgroun Interaction betwe	.d en nasal spread	ding and reduplic	cation	

- Malay has total reduplication. How does this interact with nasal spreading?
- For a root like /wani/ (\rightarrow [wanı̃]) 'fragrant' (left-side target, right-side trigger) there are four conceivable outputs:

		Base		
		Oral	Nasal	
REDUPLICANT	Nasal	d. $[\underline{\tilde{w}\tilde{a}\eta\tilde{i}}$ -wa $\eta\tilde{i}]$	c. $[\underline{\tilde{w}}\underline{\tilde{a}}\underline{\eta}\tilde{i}-\overline{\tilde{w}}\underline{\tilde{a}}\underline{\eta}\tilde{i}]$	
	Oral	a. [<u>waŋĩ</u> -waŋĩ]	b. [<u>waŋĩ</u> -ữãŋĩ]	

	Background			
Backgrou	nd ween nasal sprea	ding and reduplic	ation	

- Malay has total reduplication. How does this interact with nasal spreading?
- For a root like /wani/ (\rightarrow [wanı̃]) 'fragrant' (left-side target, right-side trigger) there are four conceivable outputs:

		BASE		
		Oral	Nasal	
REDUPLICANT	Nasal	d. $[\underline{\tilde{w}\tilde{a}\eta\tilde{i}}$ -wa $\eta\tilde{i}]$	c. [<u>w̃ã</u> ŋĩ-w̃ãŋĩ]	
	Oral	a. [<u>waŋĩ</u> -waŋĩ]	b. [<u>waŋĩ</u> -ŵãŋĩ]	

Option 1: $[\underline{\text{wan}}$ -wan $\tilde{i}]$ (4a)

- $\circ\,$ Base- and reduplicant-initial spans are both oral
- \rightarrow underapplication of nasal spreading (no spread across juncture)

	Background			
Backgroun Interaction betwe	.d en nasal spread	ding and reduplic	cation	

- Malay has total reduplication. How does this interact with nasal spreading?
- For a root like /wani/ (\rightarrow [wanı̃]) 'fragrant' (left-side target, right-side trigger) there are four conceivable outputs:

		BASE		
		Oral	Nasal	
REDUPLICANT	Nasal	d. $[\underline{\tilde{w}\tilde{a}\eta\tilde{i}}$ -wa $\eta\tilde{i}]$	c. [<u>w̃ă</u> ŋĩ-w̃ăŋĩ]	
	Oral	a. [<u>waŋĩ</u> -waŋĩ]	b. [<u>waŋĩ</u> -ŵãŋĩ]	

Option 2: $[\underline{\text{waŋ}} - \tilde{\text{waŋ}}]$ (4b)

- $\circ\,$ Base-initial span is nasalized but reduplicant-initial span is oral
- \rightarrow NORMAL APPLICATION of nasal spreading (obeys allophonic distribution)

	Background			
Backgrou	nd ween nasal sprea	ding and reduplic	ation	

- Malay has total reduplication. How does this interact with nasal spreading?
- For a root like /wani/ (\rightarrow [wanı̃]) 'fragrant' (left-side target, right-side trigger) there are four conceivable outputs:

		BASE		
		Oral	Nasal	
Reduplicant	Nasal	d. $[\underline{\tilde{w}\tilde{a}\eta\tilde{i}}$ -wa $\eta\tilde{i}]$	c. [<u>w̃ã</u> ŋĩ-w̃ãŋĩ]	
1022 01 2101101	Oral	a. [<u>waŋĩ</u> -waŋĩ]	b. $[\underline{\text{wan}}$ - $\tilde{\text{w}}$ an $\tilde{\text{i}}$]	

Option 3: $[\underline{\tilde{w}} \tilde{a} \underline{\eta} \tilde{i} - \tilde{w} \tilde{a} \underline{\eta} \tilde{i}]$ (4c)

- \circ Base- and reduplicant-initial spans both nasal
- \rightarrow OVERAPPLICATION of nasal spreading (reduplicant-initial span nasal but no local trigger) "**recopying**" (Kiparsky 2010:3)

Siah, Zukoff, & Hsieh

Recopying in Malay

	Background			
Backgrou	nd ween nasal sprea	ding and reduplic	ation	

- Malay has total reduplication. How does this interact with nasal spreading?
- For a root like /wani/ (\rightarrow [wanı̃]) 'fragrant' (left-side target, right-side trigger) there are four conceivable outputs:

		BASE		
		Oral	Nasal	
REDUPLICANT	Nasal	d. $[\tilde{w}\tilde{a}\eta\tilde{i}$ -wa $\eta\tilde{i}]$	c. [<u>w̃ă</u> ŋĩ-w̃ăŋĩ]	
	Oral	a. [<u>waŋĩ</u> -waŋĩ]	b. [<u>waŋĩ</u> -w̃aŋĩ]	

Option 4: [w̃ăŋĩ-waŋĩ] (4d)

- \circ Base-initial span is or al but reduplicant-initial span is nasal
- \rightarrow Pathological output (nasalization in only the wrong place)

	Background			
Backgrour	nd			
Recopying overap	pplication in M	alay reduplication		

\star Which is the real output?

***** Which is the real output?

• According to Onn (1976:180), it's the recopying overapplication output (4c):

(5) Nasalization in Johore Malay reduplication

	Root in isolation	Reduplicated form
'fragrant/(intensified)'	[waŋĩ]	[<mark>w̃a</mark> ŋĩ-w̃aŋĩ]
'germ/germs'	[hamõ]	[<mark>ĥã</mark> mẽ̃-ĥãmẽ̃]
'reverie/ambition'	[aŋãn]	[<mark>ã</mark> ŋãn-ãŋãn]
'wind/unconfirmed news'	[aŋẽn]	[<mark>ã</mark> ŋẽn-ãŋẽn]

-

	Background			
Backgroun Derivational/seria	ld al theories fail t	o generate recop	ying	

- $\star\,$ This is significant because process ordering theories can't derive this pattern!
- McCarthy & Prince (1995:43–46) show that no ordering of nasalization and copying can derive recopying overapplication:

(6)	Nasalization $>$ Copy $=$ UNDER		(7)	$Copy > Nasalization = NORMAL^1$		
	Input	/ RED-waŋi /		Input	/ RED-waŋi /	
	Rule 1: Nasalization Rule 2: Copy	RED-waŋĩ waŋĩ- waŋĩ		Rule 1: Copy Rule 2: Nasalization	waŋi -waŋi waŋ ĩ-ឃ̃ã ŋ ĩ	
	Output:	[waŋî-waŋî]		Output:	[waŋĩ-ŵãŋĩ]	

¹ Persistent nasalization would also derive normal application.

	Background			
Backgroun Derivational/serie	nd al theories fail	to generate recop	ying	

- $\star\,$ This is significant because process ordering theories can't derive this pattern!
- McCarthy & Prince (1995:43–46) show that no ordering of nasalization and copying can derive recopying overapplication:

(6)	Nasalization $>$ Copy $=$ UNDER			$Copy > Nasalization = NORMAL^1$		
	Input	/ RED-waŋi /		Input	/ RED-waŋi /	
	Rule 1: Nasalization Rule 2: Copy	RED-waŋĩ waŋĩ -waŋĩ		Rule 1: Copy Rule 2: Nasalization	waŋi -waŋi waŋ ĩ-ŵã ŋĩ	
	Output:	[waŋî-waŋî]		Output:	[waŋĩ-wãŋĩ]	

 \star Derivational/serial theories would thus undergenerate this pattern, if it truly exists. Proponents of such theories have thus questioned this data.

 $^{^1\,}$ Persistent nasalization would also derive normal application.

	Background			
Backgroun Derivational/seria	ld al theories fail to	generate recopyin	g	

- $\star\,$ This is significant because process ordering theories can't derive this pattern!
- McCarthy & Prince (1995:43–46) show that no ordering of nasalization and copying can derive recopying overapplication:

(6)	Nasalization $>$ Copy $=$ UNDER			$Copy > Nasalization = NORMAL^1$		
	Input	/ red-waŋi /		Input	/ RED-waŋi /	
	Rule 1: Nasalization Rule 2: Copy	RED-waŋĩ waŋĩ- waŋĩ		Rule 1: Copy Rule 2: Nasalization	waŋi -waŋi waŋ ĩ-ŵã ŋĩ	
	Output:	[waŋĩ-waŋĩ]		Output:	[waŋĩ-wãŋĩ]	

- \star Derivational/serial theories would thus undergenerate this pattern, if it truly exists. Proponents of such theories have thus questioned this data.
- \rightarrow We conducted an acoustic experiment to determine which output(s) is/are actually attested.

Persistent nasalization would also derive normal application.

	Experiment		
Roadmap			

§1 Introduction

- §2 Background
- §3 Experiment
 - Procedure
 - Results
- §4 Analysis

§5 Conclusion

		$\mathbf{Experiment}$		
Procedure				
Experimental des	sign			

- Online production study with 9 native speakers of Peninsular Malay.
- Speakers produced 9 target words in reduplicated and unreduplicated form.
- The first syllables of the target words consisted of three different strings that undergo nasal spread, three words of each type:
 - $\circ \ wa:$ /waŋi/, /wajaŋ/, /waruŋ/
 - $\circ~ha$: /hama/, /haiwan/, /haram/
 - $\circ~a$:/aŋan/, /ajam/, /araŋ/
- All words were embedded in a carrier sentence that had no nasal segment: • Sila tulis __ satu kali lagi. "Please write __ one more time".
- Participants produced each sentence once, in randomized order, yielding 162 tokens in total.

		Experiment		
Procedure Acoustic measure	e of nasality: Al	1-P0		

- $\bullet\,$ A1–P0 values as an acoustic measure of nasality (Chen 1997, Styler 2017).
- A1–P0 values were extracted at midpoint of the first syllable [a] in the target words:
 - \circ In unreduplicated context (e.g., /wa_u ni/)
 - \circ In reduplicated context (e.g., $/wa_{\scriptscriptstyle B} \eta i \text{-} wa_{\scriptscriptstyle B} \eta i /)$
- Normalized A1–P0 values for each reduplicated word for each speaker were calculated as follows:

Figure 1: Calculating normalized A1–P0 values

		Experiment		
Results				
Aggregated resul	ts			

- The aggregated results are given in Figure 2 below.
- The [a] vowel in the base $(a_{\scriptscriptstyle B})$ has a higher degree of nasality (lower A1–P0 value) compared to the same vowel in the reduplicant $(a_{\scriptscriptstyle R})$.
 - \rightarrow Normal application as the typical output (e.g., waŋĩ-ŵãŋĩ).

Figure 2: Overall nasality of $a_{\scriptscriptstyle R}$ and $a_{\scriptscriptstyle B}$

		Experiment		
Results				
Scatter plot of ag	ggregated resul	ts		

• Figure 3 visualizes a scatter plot of the aggregated results.

Figure 3: Scatter plot of aggregated results

Siah, Zukoff, & Hsieh

Recopying in Malay

		$\mathbf{Experiment}$		
Results Scatter plot of re	sults by speaker			

- Individual speakers demonstrate substantial intraspeaker variation.
 - Speaker F6 (filled square) vacillates between over-, under- and normal application in her production.

Figure 4: Scatter plot of results by speaker

		$\mathbf{Experiment}$		
Results Scatter plot of re	esults by word			

- The same variation is seen in individual words.
 - Reduplicated word /waŋi-waŋi/ (filled triangle) is variably produced with over-, under- and normal application of nasal spreading.

Figure 5: Scatter plot of results by word

		Analysis	
Roadmap			

- §1 Introduction
- §2 Background
- §3 Experiment
- §4 Analysis
 - Analysis of nasal spreading
 - Analysis of reduplication

§5 Conclusion

		Analysis	
Analysis _{Overview}			

- We model the experimental results using Optimality Theory (Prince & Smolensky 1993).
 - Reduplication and its interaction with phonology is modeled with Base-Reduplicant Correspondence Theory (McCarthy & Prince 1995 [M&P]).
 - $\circ\,$ To account for the variable outputs, we will propose a grammar with partially ordered constraints (Anttila 1997).
- Structure of the analysis:
 - 1. M&P's OT analysis of the basic allophonic spreading pattern.
 - 2. Adaptation of M&P's BRCT analysis of the reduplication pattern, supplemented to account for the newly observed variation.

		Analysis	
Analysis	Constraints		

- M&P derive the allophonic distribution using the constraints in (8–10), ranked as below.
- (8) ***NV** (*****[+nas][-nas,-cons]): Assign a violation * for each non-nasal vowel or approximant which immediately follows a nasal(ized) segment.
- (9) $*\tilde{\mathbf{V}}$ (*[+nas,-cons]): Assign a violation * for each nasalized vowel or approximant.
- (10) $IDENT[\pm nas]/[-cons]-IO:$ Assign a violation * for each [-consonantal] segment whose output value of [\pm nasal] does not match its input value.

Ranking

*NV
$$\gg$$
 * $\tilde{V} \gg$ IDENT[$\pm nas$]/[$-cons$]-IO

		Analysis	
Analysis Nasal spreading:	static patterns		

- This analysis derives the correct result for the static distribution of nasality:
- (11) Nasalization in Johore Malay (w/ maximally unfaithful input)

/makãn/	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a. makan	*!		*
b. 🖙 mãkan		*	**
c. makãn	*!	*	
d. mãkãn		**!	*

		Analysis	
Analysis Nasal spreading:	static patterns		

- This analysis derives the correct result for the static distribution of nasality:
- (11) Nasalization in Johore Malay (w/ maximally unfaithful input)

/makãn/	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a. makan	*!		*
b. 🖙 mãkan		*	**
c. makãn	*!	*	
d. mãkãn		**!	*

• *NV \gg * \tilde{V} : Nasal vowels/approximants after nasals [(11b) \succ (11a,c)].

		Analysis	
Analysis Nasal spreading:	static patterns		

- This analysis derives the correct result for the static distribution of nasality:
- (11) Nasalization in Johore Malay (w/ maximally unfaithful input)

/makã	n/	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a.	makan	*!		*
b. 🖙	mãkan		*	**
с.	makãn	*!	*	
d.	mãkãn		**!	*

- *NV \gg * \tilde{V} : Nasal vowels/approximants after nasals [(11b) \succ (11a,c)].
- $^{*}\tilde{V} \gg ID[\pm nas]$: All other vowels/approximants are oral [(11b) \succ (11d)].

		Analysis	
Analysis Nasal spreading:	Iterative spread		

- The same ranking causes nasality to spread iteratively when there is an extended vowel/approximant span (12):
- (12) Iterative nasal spreading in Johore Malay

/pəŋ-awas-an/	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a. pəŋ-awas-an	*!		
b. pəŋ-ãwas-an	*!	*	*
c. pəŋ-ãwas-an	*!	**	**
d. 🖙 pəŋ-ãŵãs-an		***	***
e. pəŋ-ãŵãs-ãn		****!	****
f. pə̃ŋ-ãwãs-an		****!	****

		Analysis	
Analysis Nasal spreading:	Iterative spread		

- The same ranking causes nasality to spread iteratively when there is an extended vowel/approximant span (12):
- (12) Iterative nasal spreading in Johore Malay

/pəŋ-awas-an/	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a. pəŋ-awas-an	*!		
b. pəŋ-ãwas-an	*!	*	*
c. pəŋ-ãŵas-an	*!	**	**
d. 🖙 pəŋ-ãŵãs-an		***	***
e. pəŋ-ãŵãs-ãn		****!	****
f. pə̃ŋ-āw̃ās-an		****!	****

- \bullet Prefix /ŋ/ induces a *NV violation when concatenated with the root (12a).
- *NV \gg * \tilde{V} prefers nasalizing the root-initial /a/ [(12d) \succ (12a)].

		Analysis	
Analysis Nasal spreading:	Iterative spread		

- The same ranking causes nasality to spread iteratively when there is an extended vowel/approximant span (12):
- (12) Iterative nasal spreading in Johore Malay

/pəŋ-awas-an/	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a. pəŋ-awas-an	*!		
b. pəŋ-ãwas-an	*!	*	*
c. pəŋ-ãŵas-an	*!	**	**
d. 🖙 pəŋ-ãŵãs-an		***	***
e. pəŋ-ãwãs-ãn		****!	****
f. põŋ-ãŵãs-an		****!	****

• But to fully alleviate the *NV violation, the whole span must be nasalized $[(12d) \succ (12b,c)]$.

		Analysis	
Analysis Nasal spreading:	Iterative spread		

- The same ranking causes nasality to spread iteratively when there is an extended vowel/approximant span (12):
- (12) Iterative nasal spreading in Johore Malay

/pəŋ-awas-an/		*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a.	pəŋ-awas-an	*!		
b.	pəŋ-ãwas-an	*!	*	*
c.	pəŋ-ãw̃as-an	*!	**	**
d. 🛤	🛛 pəŋ-ãwãs-an		***	***
e.	pəŋ-ãŵãs-ãn		****!	****
f.	pə̃ŋ-ãw̃as-an		****!	****

• Spreading terminates at $[+cons] /s/ ([\tilde{a}s] \text{ doesn't violate *NV})$, so the /a/ following the /s/ doesn't nasalize $[(12d) \succ (12e)]$.

		Analysis	
Analysis Nasal spreading:	Iterative spread		

- The same ranking causes nasality to spread iteratively when there is an extended vowel/approximant span (12):
- (12) Iterative nasal spreading in Johore Malay

/pəŋ-awas-an/	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a. pəŋ-awas-an	*!		
b. pəŋ-ãwas-an	*!	*	*
c. pəŋ-ãŵas-an	*!	**	**
d. 🖙 pəŋ-ãŵãs-an		***	***
e. pəŋ-ãŵãs-ãn		****!	****
f. pə̃ŋ-ãw̃as-an		****!	****

- Likewise, since the $/\partial/$ of the prefix does not follow a nasal consonant, it doesn't nasalize either [(12d) \succ (12f)].
- \rightarrow But this is the same kind of position where we find nasalization in the "recopying" output in reduplication.

Siah, Zukoff, & Hsieh

Recopying in Malay

			Analysis	
Analysis Reduplication: B	ase-Reduplicant C	Correspondence TI	heory	

- To generate recopying overapplication in reduplication, we need to adopt Base-Reduplicant Correspondence Theory [BRCT] (McCarthy & Prince 1995):
 - $\circ\,$ A correspondence relation (BR) holds between the output base and the output reduplicant.
 - \circ Faithfulness constraints act over this relation to encourage similarity between the base and the reduplicant.
- (13) Base-Reduplicant Correspondence Theory (McCarthy & Prince 1995:4)

Input / $A_{FX_{RED}}$ + S_{TEM} / \downarrow IO Correspondence Output RED \leftarrow BASE BR Correspondence

24/41

			Analysis	
Analysis Reduplication: Ba	ase-Derivative Co	rrespondence The	ory	

- To capture the underapplication output, we adopt an additional component of Correspondence Theory: Output-Output / Base-Derivative (BD) correspondence (Benua 1995, 1997, Burzio 1996, Kenstowicz 1996, Kager 1999, et seq.).
 - $\circ\,$ A complex derivative corresponds, and may be faithful to, its morphological base.
 - $\circ\,$ This is a parallelist alternative for capturing cyclic effects.
- (14) Base-Derivative Correspondence (cf. Benua 1997:7)

			Analysis	
Analysis Reduplication: B	D Correspondence	e in Malay redupl	ication	

- Claim: The BD correspondence relation in Malay reduplication must hold between the morphological base (the unreduplicated output root) and **both**:
 - 1. The reduplicative base, and
 - 2. The reduplicant

(15) Correspondence relations in Malay reduplication (nasalization suppressed)

		Analysis	
Analysis Reduplication: Va	ariation		

• Following our experimental results, we want to model variation between three outputs:

Option 1: $[\underline{\text{wan}}$ -wan $\tilde{1}$ UNDERAPPLICATION Nasalize just the /i/'s following the [n]'s

Option 2: [waŋĩ-w̃aŋĩ] NORMAL APPLICATION Do iterative nasal spreading like normal

Option 3: $[\underline{\tilde{w}} \tilde{a} \underline{\eta} \tilde{i} - \tilde{w} \tilde{a} \underline{\eta} \tilde{i}]$ OVERAPPLICATION ("recopying") Do iterative nasal spreading like normal, *and* nasalize the reduplicant-initial span to match the base

		Analysis	
Analysis Reduplication: Co	onstraints		

- The only new constraints: IDENT[±nasal] constraints on these two new correspondence relations.
- (16) **IDENT** $[\pm nas]$ -**BR:** Assign a violation * for each segment in the reduplicant whose value of $[\pm nasal]$ does not match its correspondent in its reduplicative base.
- (17) **IDENT** $[\pm nas]$ -**BD**: Assign a violation * for each segment in the derivative whose value of $[\pm nasal]$ does not match its correspondent in its morphological base.

		Analysis	
Analysis			
Reduplication: R	ankings		

- The observed variation is derived via a variable ranking (cf. Anttila 1997) between ID[nas]-BD, ID[nas]-BR, and *NV (all ranked above $*\tilde{V}$):
- (18) Ranking

• The factorial resolution of the three mutually unranked top constraints leads to our three attested outcomes.

		Analysis	
Analysis Reduplication: De	eriving variation		

- The following tableau shows the violation profile of the relevant outputs.
- (19) Variable realization of nasalization in Malay reduplication

Morph Base: [waŋĩ]	ID[nas]-BD	ID[nas]-BR	*NV	*Ũ
INPUT: /RED, waŋi/				
a. 🕸 waŋĩ-waŋĩ under			* (<u>ī</u> -w)	**
b. ☞ waŋĩ-wãŋĩ normal	** (ŵ,ã)	** (w,a)	l	****
c. ☞ <u>w̃aŋĩ</u> -w̃aŋĩ over	**** $(\underline{\tilde{w}}, \underline{\tilde{a}}, \overline{w}, \overline{a})$			*****
d. $\underline{\tilde{w}\tilde{a}\eta\tilde{i}}$ -wa $\eta\tilde{i}$	** $(\underline{\tilde{w}}, \underline{\tilde{a}})$	** (w,a)	* (<u>ī</u> -w)	****

- The following tableau shows the violation profile of the relevant outputs.
- (19) Variable realization of nasalization in Malay reduplication

MORPH BASE: [waŋĩ]	ID[nas]-BD	ID[nas]-BR	*NV	*Ũ
inter. /iteb, waji/				
a. 🛯 waŋĩ-waŋĩ under			* (<u>ī</u> -w)	**
b. 🕸 waŋĩ-wãŋĩ normal	** (ŵ,ã)	** (w,a)	l	****
c. ☞ <u>wãŋĩ</u> -wãŋĩ over	**** $(\underline{\tilde{w}}, \underline{\tilde{a}}, \overline{w}, \overline{a})$		1	*****
d. <u>w̃āŋĩ</u> -waŋĩ	** $(\underline{\tilde{w}},\underline{\tilde{a}})$	** (w,a)	* (<u>ī</u> -w)	****

- Candidate (19d) (nasalization in reduplicant but not base) is harmonically bounded by (19a,b).
 - $\circ\,$ This is equivalent to the non-existent quadrant from Figure 3.
 - \circ It will be omitted moving forward.

			Analysis	
Analysis				
Roduplication	Doriving under	nnlightion		

UNDERAPPLICATION

 $\mathrm{ID}[\mathrm{nas}]\text{-}\mathrm{BD} \gg \mathrm{^*NV}$

- Underapplication (20a) maintains isolation form of the root in both base and reduplicant – at the expense of a nasal-oral sequence at the juncture.
 - \circ Both other outputs nasalize segments which were or al in the morphological base.

(20) Variable realization: UNDERAPPLICATION

Morph Base: [waŋĩ]	Ip[nas]-BD	ID[nas]-BB	*NV	*Ũ
INPUT: /RED, waŋi/	15[1183]-55	ib[iias]-bit	111	v
a. 🖙 waŋĩ-waŋĩ under			* (<u>ĩ</u> -w)	**
b. waŋī-wãŋĩ normal	*!* (\tilde{w}, \tilde{a})	*!* (w,a)		****
c. $\underline{\tilde{w}\tilde{a}\eta\tilde{i}}$ - $\tilde{w}\tilde{a}\eta\tilde{i}$ over	*!*** $(\underline{\tilde{w}},\underline{\tilde{a}},\overline{w},\overline{a})$			*****

			Analysis	
Analysis				
Reduplication: D	eriving normal ar	plication		

NORMAL APPLICATION

 $NV \gg ID[nas]-BD \gg ID[nas]-BR$

- Normal application (21b) occurs when it is least important to maintain identity between base and reduplicant.
 - As long as the "reduplicant" stands in BD correspondence with the morphological base, this candidate has 2 fewer violations of ID[nas]-BD than does the overapplication candidate (21c).

Morph Base: [waŋĩ]	*NV	ID[nac]-BD	ID[nae]-BB	*Ũ
INPUT: /RED, waŋi/	14 V	ID[IIas]-DD	ID[IIas]-DIC	v
a. waŋī-waŋĩ under	*! (<u>ī</u> -w)			**
b. ≌ waŋĩ-wãŋĩ normal		** (ŵ,ã)	** (w,a)	****
c. $\underline{\tilde{w}\tilde{a}\eta\tilde{i}}$ - $\tilde{w}\tilde{a}\eta\tilde{i}$ over		***!* $(\underline{\tilde{w}}, \underline{\tilde{a}}, \overline{\tilde{w}}, \overline{\tilde{a}})$	1	*****

(21) Variable realization: NORMAL APPLICATION

			Analysis	
Analysis				
Reduplication D	eriving overan	olication		

OVERAPPLICATION

*NV, ID[nas]-BR $\gg ID[nas]$ -BD

- Recopying overapplication (22c) occurs when maintaining BD-identity is least important.
 - $\circ\,$ Realizing nasalization on the reduplicant-initial span both eliminates all nasal-oral sequences and maintains BR identity.
 - $\circ\,$ This comes at the expense of diverging from the root in isolation.

Morph Base: [waŋī] INPUT: /RED, waŋi/	*NV	ID[nas]-BR	ID[nas]-BD	*Ũ
a. wanī-wanī under	*! (<u>ĩ</u> -w)	1	I	**
b. waŋĩ-wãŋĩ normal		*!* (w,a)	** (ŵ,ã)	****
c. ☞ <u>wãŋĩ</u> -wãŋĩ over			**** $(\underline{\tilde{w}}, \underline{\tilde{a}}, \overline{w}, \overline{a})$	*****

(22) Variable realization: OVERAPPLICATION

Siah, Zukoff, & Hsieh

		Conclusion	
Roadmap			

- §1 Introduction
- §2 Background
- §3 Experiment
- §4 Analysis

§5 Conclusion

			Conclusion	
Conclusion	1			
Summary				

- Our acoustic experiment revealed three attested outputs for the interaction between nasal spreading and reduplication in Malay, in free variation:
 - Option 1:
 [waŋĩ-waŋĩ] (UNDERAPPLICATION)

 Option 2:
 [waŋĩ-wãŋĩ] (NORMAL APPLICATION)

 Option 3:
 [wãŋĩ-wãŋĩ] (Recopying OVERAPPLICATION)
- While this paints a more complex picture than what was originally reported by Onn (1976), it crucially confirms the existence of the recopying pattern, which has been of great interest in the theoretical literature.
- We showed that BRCT can generate all three outputs in a grammar with variable constraint ranking.

			Conclusion	
Conclusion Recopying fails in	l process ordering			

• Recopying is significant because it can't be derived serially (M&P:43–46):

(23)	Nasalization $>$ Copy $=$ UNDER			Copy > Nasalization = NORMAL		
	Input	/ RED-waŋi /		Input	/ RED-waŋi /	
	Rule 1: Nasalization Rule 2: Copy	RED-waŋĩ waŋĩ- waŋĩ		Rule 1: Copy Rule 2: Nasalization	waŋi-waŋi waŋî- ŵã ŋî	
	Output:	[waŋî-waŋî]		Output:	[waŋĩ-wãŋĩ]	

			Conclusion	
Conclusion Recopying fails in	l process ordering			

• Recopying is significant because it can't be derived serially (M&P:43–46):

(23)	Nasalization $>$ Copy $=$ UNDER			Copy > Nasalization = NORMAL		
	Input	/ red-waŋi /		Input	/ RED-waŋi /	
	Rule 1: Nasalization Rule 2: Copy	RED-waŋĩ waŋĩ -waŋĩ		Rule 1: Copy Rule 2: Nasalization	waŋi -waŋi waŋ ĩ-ŵã ŋĩ	
	Output:	[waŋĩ-waŋĩ]		Output:	[waŋĩ-ĩaŋĩ]	

- This holds of recent constraint-based serial theories, many of which have contested the existence of the recopying data in Malay.
 - Morphological Doubling Theory (Inkelas & Zoll 2005:221, n. 18)
 - \circ Reduplication in Stratal OT (Kiparsky 2010:3–4)
 - Serial Template Satisfaction in Harmonic Serialism (McCarthy, Kimper, & Mullin 2012:203)

			Conclusion	
Conclusion Recopying fails in	l process ordering			

• Recopying is significant because it can't be derived serially (M&P:43–46):

(23)	Nasalization $>$ Copy	(24)	Copy > Nasalization = NORMAL		
	Input	/ RED-waŋi /		Input	/ RED-waŋi /
	Rule 1: Nasalization Rule 2: Copy	RED-waŋĩ waŋĩ -waŋĩ		Rule 1: Copy Rule 2: Nasalization	waŋi-waŋi waŋî- ŵã ŋî
	Output:	[waŋĩ-waŋĩ]		Output:	[waŋĩ-wãŋĩ]

- This holds of recent constraint-based serial theories, many of which have contested the existence of the recopying data in Malay.
- * On the other hand, recopying overapplication *can* be derived with a parallel theory like BRCT!

			Conclusion	
Conclusion Ramifications	1			

- In the literature, everyone agrees that the existence of recopying overapplication would argue conclusively for BRCT.
- * Since we've shown that the pattern does exist, **BRCT must be the correct theory of reduplication**.

		Conclusion	

Thank you!

			References
References	Ι		

- Ahmad, Zaharani. 2005. The Phonology Morphology Interface in Malay: An Optimality Theoretic Account. Canberra: Pacific Linguistics, Research School of Pacific and Asian Studies, Australian National University.
- Anttila, Arto. 1997. Deriving Variation from Grammar. In Frans Hinskens, Roeland van Hout & W. Leo Wetzels (eds.), Variation, Change and Phonological Theory, 35–68. Amsterdam/Philadelphia: John Benjamins Publishing Company.
- Benua, Laura. 1995. Identity Effects in Morphological Truncation. In Jill Beckman, Suzanne Urbanczyk & Laura Walsh Dickey (eds.), Papers in Optimality Theory (University of Massachusetts Occasional Papers in Linguistics 18), 77–136. Amherst, MA: Graduate Linguistics Student Association.

——. 1997. Transderivational Identity: Phonological Relations Between Words. PhD Dissertation, University of Massachusetts, Amherst.

- Blust, Robert. 2013. The Austronesian Languages. Revised edn. Canberra: Asia-Pacific Linguistics. https://openresearch-repository.anu.edu.au/bitstream/1885/10191/6/Blust-2013-AustronesianLanguages.pdf.
- Burzio, Luigi. 1996. Surface Constraints versus Underlying Representation. In Jacques Durand & Bernard Laks (eds.), Current Trends in Phonology: Models and Methods, 97–122. Salford: University of Salford Publications.
- Chen, Marilyn Y. 1997. Acoustic Correlates of English and French Nasalized Vowels. The Journal of the Acoustical Society of America 102(4):2360–2370. https://pubs.aip.org/asa/ jasa/article-abstract/102/4/2360/562446.
- Inkelas, Sharon & Cheryl Zoll. 2005. *Reduplication: Doubling in Morphology*. Cambridge, UK: Cambridge University Press.

Kager, René. 1999. Optimality Theory. Cambridge: Cambridge University Press.

			References
References	s II		

- Kenstowicz, Michael. 1996. Base-Identity and Uniform Exponence: Alternatives to Cyclicity. In Jacques Durand & Bernard Laks (eds.), Current Trends in Phonology: Models and Methods, 363–393. Salford: University of Salford Publications.
- Kiparsky, Paul. 2010. Reduplication in Stratal OT. In Linda Uyechi & Lian Hee Wee (eds.), Reality Exploration and Discovery: Pattern Interaction in Language & Life, 125–142. Stanford: CSLI.
- McCarthy, John J., Wendell Kimper & Kevin Mullin. 2012. Reduplication in Harmonic Serialism. Morphology 22(2):173–232.
- McCarthy, John J. & Alan Prince. 1995. Faithfulness and Reduplicative Identity. In Jill Beckman, Suzanne Urbanczyk & Laura Walsh Dickey (eds.), *Papers in Optimality Theory* (University of Massachusetts Occasional Papers in Linguistics 18), 249–384. Amherst, MA: Graduate Linguistics Student Association.
- Onn, Farid Mohamed. 1976. Aspects of Malay Phonology and Morphology: A Generative Approach. PhD Dissertation, University of Illinois, Urbana-Champaign.
- Prince, Alan & Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in Generative Grammar. Technical Report TR-2 Cognitive Science Center Rutgers University.
- Styler, Will. 2017. On the Acoustical Features of Vowel Nasality in English and French. The Journal of the Acoustical Society of America 142(4):2469–2482. https://pubs.aip.org/asa/ jasa/article/142/4/2469/853233.

					References			
Analysis								
Nasal spreading: avoiding denasalization								

- (25) **IDENT**[±**nas**]/[+**cons**]-**IO**: Assign a * for each [+consonantal] segment whose output value of [±nasal] doesn't match its input value.
- (26) Ranking IDENT[\pm nas]/[+cons]-IO, *NV $\gg \tilde{V} \gg$ IDENT[\pm nas]/[-cons]-IO
- (27) Nasalization in Johore Malay (w/ maximally unfaithful input)

/makãn/	$ID[\pm nas]/[+cons]-IO$	*NV	*Ũ	$ID[\pm nas]/[-cons]-IO$
a. makan		*!		*
b. 🖙 mãkan			*	**
c. makãn		*!	*	
d. mãkãn			**!	*
e. bakan	*!			*

• IDENT[\pm nas]/[+cons]-IO \gg * \tilde{V} ensures that nasal stops don't denasalize to avoid *NV violations [(27b) \succ (27e)].